18 research outputs found

    Emergent global oscillations in heterogeneous excitable media: The example of pancreatic beta cells

    Full text link
    Using the standard van der Pol-FitzHugh-Nagumo excitable medium model I demonstrate a novel generic mechanism, diversity, that provokes the emergence of global oscillations from individually quiescent elements in heterogeneous excitable media. This mechanism may be operating in the mammalian pancreas, where excitable beta cells, quiescent when isolated, are found to oscillate when coupled despite the absence of a pacemaker region.Comment: See home page http://lec.ugr.es/~julya

    Theory of traveling filaments in bistable semiconductor structures

    Full text link
    We present a generic nonlinear model for current filamentation in semiconductor structures with S-shaped current-voltage characteristics. The model accounts for Joule self-heating of a current density filament. It is shown that the self-heating leads to a bifurcation from static to traveling filament. Filaments start to travel when increase of the lattice temperature has negative impact on the cathode-anode transport. Since the impact ionization rate decreases with temperature, this occurs for a wide class of semiconductor systems whose bistability is due to the avalanche impact ionization. We develop an analytical theory of traveling filaments which reveals the mechanism of filament motion, find the condition for bifurcation to traveling filament, and determine the filament velocity.Comment: 13 pages, 5 figure

    Photochemisch induzierte dissipative Strukturen

    No full text

    Conditioning Ia-afferent stimulation reduces the soleus Hoffman reflex in humans when muscle spindles are assumed to be inactive

    No full text
    Despite higher neural activation during active as compared to passive muscle shortening, Hoffman reflexes (H-reflexes) are similar. This may be explained by homosynaptic post-activation depression (HPAD) of Ia-afferents being present during active shortening. Accordingly, it was investigated whether conditioning electrical stimulation of the tibial nerve reduced the H-reflex less during active than passive shortening. The effects of two conditioning modes (0.2 and 1 Hz) were compared to a control mode without conditioning. H-reflexes and M-waves were elicited as the ankle passed 90degrees with the soleus muscle undergoing passive or active (20% MVC) lengthening or shortening. Conditioning had no effect during active shortening. In contrast, during passive shortening, the H:M of the I Hz mode was significantly less than that of the 0.2 Hz and control modes. In lengthening, H:M was unaffected by conditioning. These findings support that HPAD reduces the synaptic efficacy of Ia-afferents during active shortening, active and passive lengthening, but not passive shortening. (C) 2004 Elsevier Ireland Ltd. All rights reserved

    Wave competition in excitable modulated media.

    Get PDF
    The propagation of an initially planar front is studied within the framework of the photosensitive Belousov-Zhabotinsky reaction modulated by a smooth spatial variation of the local front velocity in the direction perpendicular to front propagation. Under this modulation, the wave front develops several fingers corresponding to the local maxima of the modulation function. After a transient, the wave front achieves a stationary shape that does not necessarily coincide with the one externally imposed by the modulation. Theoretical predictions for the selection criteria of fingers and steady-state velocity are experimentally validated
    corecore